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Monte-Carlo simulation of effective stiffness of
time-sharing optical tweezers
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The Brownian motion of a polystyrene bead trapped in a time-sharing optical tweezers (TSOT) is nu-
merically simulated by adopting Monte-Carlo technique. By analyzing the Brownian motion signal, the
effective stiffness of a TSOT is acquired at different switching frequencies. Simulation results confirm that
for a specific laser power and duty ratio, the effective stiffness varies with the frequency at low frequency
range, while at high frequency range it keeps constant. Our results reveal that the switching frequency
can be used to control the stability of time-sharing optical tweezers in a range.
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Time-sharing optical tweezers (TSOT) is a very effective
technique that produces multiple optical tweezers us-
ing a single laser beam to stretch bio-molecules and hu-
man red blood cells[1−3]. Traditionally, TSOT adopts
acousto-optic deflector[4] (AOD) or a piezoelectric scan-
ning mirror[5,6] to translate light slightly at different fre-
quencies to form quasi-stationary multiple optical traps[7]
or oscillatory traps[8]. With the aid of two orthogonally
mounted AODs, array optical tweezers is generated by
time sharing the laser beam among several positions, and
the geometry of the multi-spot pattern is controlled via
the deflector system. Recently, Wu et al. developed a
novel method to construct time-sharing optical tweezers
based on tilt rotating glass plate[2]. For both the tra-
ditional and the novel techniques forming TSOT, it is a
great challenge to study the stability property because
of the small bandwidth of detector compared with Brow-
nian motion signals of trapped beads. Meanwhile, the
stability is of great importance to control the force at
each trap independently from others by feedback[9,10].

To our knowledge, there is little quantitative report
about the stability of TSOT at higher switching fre-
quencies since the bandwidth of detectors restricts the
simultaneous measurement of stiffness of multiple traps.
Quantitatively, the use of fast beam deflectors is of crucial
importance as the time when the trap is “off”, servicing
another position, has to be shorter than the time the par-
ticle needs to diffuse away from its trapping position[4].
The more time the trap is “on”, the stiffer the trap is. To
better understand the stability property of time-sharing
multiple optical traps, we use Monte-Carlo technique to
simulate the motion of a bead in a time-sharing optical
trap in a large frequency domain, and numerically calcu-
late the effective stiffness of TSOT according to equipar-
tition theorem.

TSOT generates multiple optical tweezers by sharing a

single laser beam with different trap positions. The laser
beam serves a certain trap at a time interval and imme-
diately switches to another position to form a new one.
For a certain position, the laser switches on and off pe-
riodically. Sequential diagram of a trap formed through
time-sharing technique is shown in Fig. 1. The ratios of
durations with laser “on” and “off” is defined as duty
ratio of a TSOT in the following form:

D =
a

b
, (1)

where a and b are durations with laser “on” and laser
“off” correspondingly, and the sum of them is trap
switching periodicity T . Accordingly, the trap switch-
ing frequency fsw can be written as

fsw =
1
T

=
1

a + b
. (2)

Because the fast beam deflection is very well achieved
by the use of AOD and the rising time to produce
different trap positions is of the order of µs, which is
smaller than the trap switching periodicity of several or-
ders, the rising time is neglected in our simulation model
as a proper assumption.

Fig. 1. Sequential diagram of TSOT.
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Generally, the Brownian motion of a polystyrene bead
in aqueous solution is classified into two categories. The
first one is that the bead does confine Brownian motion
with trapping laser “on”, while the second is that the
bead does free Brownian motion without the exposure of
trapping laser. The motion equation of a bead is

mẍ + γẋ + kxx− Frand(t) = 0, (3)

where γ = 6πηR, R is the radius of the bead, η is the
viscosity coefficient of aqueous solution, Frand(t) is the
random force, the time average of which is zero, and kx

is the nominal stiffness of an optical trap without mod-
ulation of the power. In low Reynolds number case, the
polystyrene bead can be considered as an over-damping
oscillator, and thus the inertia force term can be ignored.
Therefore, Eq. (3) can be simplified to

γẋ + kxx = Frand(t). (4)

When the laser switches on one of the multiple trapping
positions, the confined Brownian motion of a trapped
bead is simulated using Monte-Carlo technique[11]. The
motion equation can be described as[12−14]

xn = xn−1 + vn−1 4 t, (5)

vn = vn−1 − kxxn−1 4 t/m +
√

12πkBTηR4 t/m2

×
√
−2 log(u) cos(2πν)− vn−1(6πηR/m)4 t, (6)

where n indicates the ordinal number of a time step, xn

and vn are the bead position and velocity correspond-
ingly, u and v are uniformly distributed random numbers
ranging in (0,1). When it comes to the state, the laser is
off, the algorithm performs well just by eliminating the
nominal stiffness term in Eq. (6).

Throughout the simulation, the temperature is set
at T = 298 K with drag coefficient of aqueous solu-
tion η = 0.894 × 10−3 kg/m · s. The mass density of
polystyrene bead is ρ = 1.05× 10−3 kg/m3. Initially, the
simulated bead is at the equilibrium position with veloc-
ity of zero. When the laser is switched to be “on”, the
stiffness kx in Eq. (6) equals 18 pN/µm, and while the
laser is “off”, kx is set to be zero during simulation.

For continuous-wave laser tweezers, the stability prop-
erty of a trap is characterized by a stiffness adopting
equipartition theorem. Similarly, TSOT is characterized
by effective stiffness, which has the form of

keff =
kBT

〈x2〉 . (7)

In the simulation, the time step is 10 ns, integration time
of detector adopts 0.1 ms, and the total time for measure-
ment is 1 s. Therefore, 10000 hits of Brownian motion
are collected to generate effective stiffness according to
Eq. (7).

The simulation shows that for 2-µm polystyrene bead
diffused in distilled water, the effective stiffness increases
with trap switching frequency under different duty ra-
tios in a certain range, as shown in Fig. 2. Sim-
ilar results for 3-µm polystyrene bead are shown in
Fig. 3. The results for beads with diameter of both 2
and 3 µm indicate a general trend for the relationship
between effective stiffness and switching frequency.

Fig. 2. Monte-Carlo simulated effective stiffness as a function
of trap switching frequency for 2-µm polystyrene bead with
duty ratios of 3:1, 1:1, and 1:3.

Fig. 3. Monte-Carlo simulation results of effective stiffness
for 3-µm polystyrene bead with duty ratios of 3:1, 1:1, and
1:3.

To better understand the dependence of stiffness on
the trap switching frequency, several models are tried to
conclude that Box Lucas model[15], which was firstly in-
troduced to describe the yield of intermediate product of
a consecutive chemical reaction, fits well with our simu-
lation dependence of effective stiffness on trap switching
frequency. Accordingly, the relation is qualitatively de-
scribed by keff = k0 · (1 − exp(−fsw/fch)), where k0 is
transient-free stiffness and fch represents characteristic
frequency. For 2-µm polystyrene bead trapped in TSOT
with duty ratio 1:3, the values of the two parameters
are k0 = 4.74± 0.05 pN/µm and fch = 156± 6 Hz. The
coefficient of determination R2 is 0.9839 which means the
Box Lucas model fits well to the dependence of effective
stiffness on switching frequency in a large frequency do-
main. The “CF” in the inset of Fig. 2 indicates where
characteristic frequency locates for 2-µm bead trpped in
TSOT with duty ratio of 1:3. Following the same proce-
dure, the parameters k0 and fch for beads with different
diameters in TSOT with different duty ratios are listed
in Table 1.

Actually, for higher frequency ranges, such as the case
of femtosecond laser tweezers[16], increase of modula-
tion frequency does not cause the variation of effective
stiffness. The trap is stable subjected to the change of
repetition rate of the femtosecond laser, and the effective
stiffness varies with the average power of high repetition
rate laser.

In lower frequency range, the model can be approxi-
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Table 1. Fitted Parameters for 2- and 3-µm
Polystyrene Beads

Duty Ratio
2-µm

k0 (pN/µm) fch (Hz)

3:1 13.65±0.12 78±3

1:1 9.30±0.10 169±7

1:3 4.74±0.05 156±6

3-µm

3:1 13.14±0.19 36±2

1:1 8.82±0.09 102±4

3:1 4.41±0.06 95±5

mated by a linear regression model with high accuracy.
When the switching frequency is smaller than the char-
acteristic frequency, namely fsw < fch, simulation results
show that it performs well even using linear regression
model, which is of great importance when using unstable
TSOT with low switching frequencies such as the case of
studying the colloidal collision frequency.

Our simulation also show that for a certain bead
trapped in TSOT with different duty ratios, the
transient-free stiffness k0 increases with duty ratio, which
determines the average power of a certain trap. As for
the same bead, the characteristic frequency varies with
the duty ratio, and according to our simulation, the char-
acteristic frequency with duty ratio of 3:1 is smaller than
those with other two duty ratios both for beads with
diameters of 2 and 3 µm. A proper explanation is that
the effective stiffness transits to a stable value quicker
than that with small duty ratio when increasing the trap
switching frequency. Meanwhile, the characteristic fre-
quencies with duty ratios of 1:1 and 1:3 are larger and
closer to each other.

In conclusion, the effective stiffness of TSOT is studied
by numerically simulating the Brownian motion signals
of polystyrene beads through Monte-Carlo technique.
Simulation results show that the effective stiffness varies
with trap switching frequency in low frequency ranges,
and keeps a constant value at high frequency ranges,
which is determined by duty ratio and input laser power.
The dependence of effective stiffness on trap switch-
ing frequency is well fitted by a Box Lucas model, the
result of which indicates potential application to vary

the effective stiffness by feedback control and to study
the colloid stability using TSOT with tunable effective
stiffness.
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